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Abstract—One of the biggest challenges in learning from data
streams is adapting the classification model to new data. Due to
the evolving nature of data streams, they are subject to a phe-
nomenon known as concept drift that makes previously learned
knowledge and model outdated. Therefore, concept drift must
be efficiently detected in order to adapt the classification model.
While there exists a plethora of drift detectors, with different
mechanisms, selecting the most suitable for a new stream is a
difficult task, since apriori knowledge may not be available and
changes over time can affect the performance of the detector. This
paper proposes a framework that exploits statistical and temporal
meta-features from sliding windows to dynamically recommend a
suitable drift detector in real-time for unseen chunks of streams
according to its properties using Meta-Learning. We performed
experiments on 10 real-world data streams and 18 synthetic
generated data streams that were subject to concept drift and
class imbalance in order to evaluate the performance of the
proposed framework. Experiments exposed that the proposed
approach was able to enhance the concept drift detection in a
variety of scenarios demonstrating robustness to class imbalance
and the advantages of dynamically selecting the drift detector.

Index Terms—Data streams, Machine Learning, Concept Drift,
Meta-Learning

I. INTRODUCTION

In recent years, there has been a remarkable advancement in
our ability to collect and analyze data. The exponential growth
has presented challenges for traditional machine learning
methods, which were primarily designed to handle static data.
On the other hand, modern data sources generate continuous
streams of data characterized by high volume and velocity.
This scenario is commonly referred to as a data streams [1],
which can be defined as a potentially unbounded sequence of
ordered instances that continuously arrive at a system.

The dynamic and evolving nature of data streams necessi-
tates that classifiers adapt and learn from emerging concepts
over time. This phenomenon is commonly referred to as
concept drift [2]. If concept drift is not correctly detected and
addressed, it can lead to a decline in predictive performance
since the knowledge acquired from previous concepts may no
longer be applicable to the current instances. Additionally, a
significant challenge in data stream learning is the robust han-
dling of class imbalance. This challenge is further amplified
in the streaming scenario where class imbalance coexists with
concept drift. Not only do the class definitions change, but the
imbalance ratio becomes dynamic and may also switch [3].

Numerous solutions have been proposed in the literature
to address these challenges [3], [4]. These solutions range
from ensemble methods to explicit drift detectors, each with its
own advantages and disadvantages. However, many of these
approaches heavily rely on prior knowledge extracted from
the data stream, which poses a challenge in non-stationary
environments. Additionally, the “No Free Lunch” theorem [5]
states that there is no single algorithm suitable for every
dataset. One potential solution is to dynamically recommend
the best algorithm for each specific problem [6]–[8]. In the
context of data streams, the algorithm recommendation prob-
lem has been effectively addressed through Meta-Learning
(MtL) [9], [10].

The core concept of MtL is to leverage knowledge gained
from previous similar problems to recommend the most suit-
able algorithm for a new and unseen dataset [11]. Building
upon this idea, our work introduces an online MtL framework
that dynamically recommends drift detectors for drifting and
imbalanced data streams. Our hypothesis is that MtL can be
effectively applied to drifting data streams to dynamically
select the most suitable drift detector for unseen chunks of a
given stream, based on their varying characteristics. The main
contributions of this paper can be summarized as follows:

• Online Framework: We propose an online Meta-
Learning framework that can recommend the most suit-
able drift detector in real-time for an unseen and recently
arrived chunk of data.

• Robustness to class imbalance: The proposed frame-
work exhibits robustness to imbalanced drifting data
streams without the need for additional mechanisms.

• Generalization: The Meta-Dataset utilized in our study
consists of synthetically generated data streams, demon-
strating the framework’s capability for generalization.

• Extensive experimental study: We conduct a compre-
hensive experimental evaluation, employing a meticu-
lously designed test bed that encompasses both real-world
and artificial benchmarks.

This paper is organized as follows. Section II presents the
theoretical foundation and related works. Section IV provides
the experimental setup and evaluation methodology. Section V
presents and analyzes the results of our study. Finally, Sec-
tion VI discusses the conclusions and future work.



II. BACKGROUND

This section reviews the background and foundations of our
methodology. Firstly, we present the literature concerning data
streams and explore their intrinsic challenges, such as class im-
balance and concept drift. Moreover, we provide an overview
of the literature on Meta-Learning and its applications.

A. Data stream

A data stream refers to a potentially unbounded sequence
of ordered instances that arrive over time within a system.
Learning from data streams imposes specific constraints on
classifiers [1]. We can define a stream, denoted as S, as a
sequence < s1, s2, s3, ..., s∞ >, where si = (X, y). This
stream can be processed either one instance at a time (online
scenario) or in chunks (block scenario). Data streams possess
four main characteristics [3], [12]: (i) Volume, (ii) Velocity,
(iii) Veracity, and (iv) Non-stationarity, which introduce chal-
lenges to classifiers that must adapt accordingly.

Class imbalance stands as one of the most critical challenges
in contemporary machine learning [13], [14]. It refers to
the disproportionate distribution of instances across different
classes, where certain classes are significantly underrepre-
sented. Within the data stream mining domain [3], class
imbalance emerges as a common issue. It manifests through
class role switches, where the majority becomes the minority
and vice versa, the introduction or disappearance of multiple
classes, and the emergence of instance-level difficulties such
as evolving class overlapping or clusters/subconcepts [15].
Moreover, it is important to note that in real-life scenarios,
streams are often not predefined as balanced or imbalanced,
and the imbalance may occur temporarily [16].

Data streams are also subject to a phenomenon known as
concept drift [17], [18]. Each instance arrives at a specific
time, denoted as t, and is generated according to a probabilistic
distribution ϕt(X, y), where X represents the feature vector
and y denotes the class label. If all instances in the stream
are generated by the same probability distribution, the data
is considered stationary, indicating that it originates from a
consistent concept. However, in real-world applications, data
rarely adheres to stationary assumptions [19]. Conversely, if
two separate instances arriving at times t and t + C are
generated by ϕt(X, y) and ϕt+C(X, y) respectively, and if
ϕt ̸= ϕt+C , a concept drift has occurred. Moreover, when
combined with class imbalance, concept drift introduces new
and unique challenges [20]. This phenomenon affects various
aspects of a data stream and thus can be analyzed from multi-
ple perspectives. When analyzing and understanding concept
drift, the following factors are considered [3], [21]:

Influence of the decision boundaries. Firstly, it is necessary
to consider how concept drift affects the learned decision
boundaries, distinguishing between real and virtual concept
drifts. Virtual drift produces a change in the unconditional
probability distribution P (x), without affecting the learned
decision boundaries. Although virtual drift does not impair
learning models, its detection is necessary to avoid false alarms

and prevent unnecessary, costly adaptations. In contrast, real
concept drift modifies the decision boundaries, making them
worthless to the current concept. Detecting and adapting to real
concept drift is crucial for preserving predictive performance.
Speed of changes. Here we can distinguish three types of
concept drift [22]: (i) incremental; (ii) gradual; and (iii) sudden
concept drifts.

• Incremental concept drift. Incremental drift generates
a sequence of intermediate states between the old and
new concepts.We can formally define an incremental drift
between distributions D0 and D1, occurring between the
t1-th and t2-th instances, using the following equation:

ϕt =


D0(X, y), if t < t1
(1− αt)D0(X, y) + αtD1(X, y), if t1 ≤ t < t2
D1(X, y), if t2 ≤ t

where

αt =
t− t1
t2 − t1

• Gradual concept drift. Gradual drift oscillates between
instances coming from both old and new concepts, with
the new concept becoming more and more frequent over
time, and can be defined as the following:

ϕt =


D0(X, y), if t < t1
D0(X, y), if t1 ≤ t < t2 ∧ δ > αt

D1(X, y), if t1 ≤ t < t2 ∧ δ ≤ αt

D1(X, y), if t2 ≤ t

where δ is a random variable ranging between (0, 1),
and αt denotes the same variable used in the context of
incremental drift.

• Sudden concept drift. Sudden drift instantaneously
switches between old and new concepts, leading to an
instant degradation of the underlying learning algorithm.

ϕt =

{
D0(X, y), if t < t1
D1(X, y), if t2 ≤ t

Recurrence. Changes in the stream can be either unique
or recurring. In the latter case, the previously seen concept
may reemerge over time, allowing us to recycle previously
learned knowledge. The past knowledge can be used as an
initialization point for the drift recovery.
Presence of noise. Noise can take the form of sporadic,
insignificant variations within a stream that can be disregarded,
or substantial corruption within the features or class labels
that need to be dealt with in order to prevent the input of
misleading or adversarial data into the classifier [23].

To address the challenges posed by concept drift, two
approaches are commonly employed: (i) implicit and (ii)
explicit. Implicit approaches manage drift adaptation through
learning mechanisms embedded in the classifier, assuming
its ability to adjust itself to new instances from the latest
concept while gradually forgetting outdated information [24].
These approaches involve establishing appropriate learning
and forgetting rates, utilizing adaptive sliding windows, or
continually tuning hyperparameters. Conversely, explicit ap-
proaches delegate drift adaptation to an external tool known as



a drift detector [4]. Drift detectors continuously monitor stream
properties (e.g., statistics) or classifier performance (e.g., error
rates). They raise a warning signal when there are indications
of impending drift and trigger an alarm signal when concept
drift has occurred.
Drift detectors. Numerous explicit drift detectors have been
proposed in recent years [25]. Like classifiers, there are three
groups of methods that can be used to detect drift: supervised,
semi-supervised, and unsupervised. The main distinction be-
tween them is the location where drift is detected. Whereas
supervised drift detectors identify changes in class boundaries,
unsupervised ones track changes in data distribution [2].

The group of supervised drift detectors that has gained the
most popularity comprises techniques that rely on measuring
the error or accuracy of classifiers over labeled instances, such
as the Drift Detector Method (DDM) [26] or Early DDM
(EDDM) [27]. These methods use statistical tests to determine
whether or not to issue a warning for drift. For instance, the
WSTD [28] method utilizes the Wilcoxon rank sum test, while
the KSWIN [29] method is based on the Kolmogorov-Smirnov
test. A well-liked group of supervised detectors are those that
rely on metrics calculated within subwindows of a stream.
The ADaptative WINdow (ADWIN) [30] is one such method,
which uses an adaptive sliding window based on Hoeffding’s
inequality. This approach has inspired the development of
several new detectors [31], [32].

Unsupervised drift detectors are concerned with identifying
discrepancies in unlabeled data without any added supervision.
These detectors often involve a statistical comparison between
two sets of data from the older and recent chunk [33], [34].
More advanced unsupervised methods attempt to pinpoint the
precise location in the feature space where the drift occurred.
These detectors concentrate on a spatial search that utilizes
different dissimilarity measures [35], [36].

When it comes to imbalanced data streams, there is a limited
number of concept drift detectors specifically designed for this
scenario. Most existing works on imbalanced data streams
focus on changes in the underlying classifier, assuming its
adaptability [3]. However, there are two notable dedicated drift
detectors for skewed streams. PerfSim [37] monitors changes
in the entire confusion matrix, while Drift Detection Method
for Online Class Imbalance (DDM-OCI) [38] tracks recall for
each class. Additionally, Korycki and Krawczyk [21] proposed
the utilization of Restricted Boltzmann Machines to detect
drifts in multi-class imbalanced data streams.

Despite the numerous drift detectors proposed in the liter-
ature, selecting the most suitable one for a given data stream
requires a priori information, which is not feasible in the online
scenario [4]. Furthermore, due to the evolving nature of data
streams, changes in their characteristics over time may lead to
the deterioration of previously selected drift detectors.

B. Meta-Learning

The main concept of Meta-Learning (MtL) [11], [39] is to
leverage knowledge gained from previous similar problems
to recommend the most suitable algorithm for a new dataset,

encapsulated in the notion of “Learning how to learn” [7],
[40]. Consequently, MtL utilizes Machine Learning (ML) to
establish mappings between the characteristics of prior prob-
lems and algorithm performance. One prominent application
of Meta-Learning lies in algorithm recommendation problems,
originally introduced by Rice [41] to select an algorithm from
a given set of options. Specifically, in the context of a set of
algorithms A, a set of datasets P composed of instances from
distribution D, and a performance measure M : P ×A → R,
the algorithm recommendation problem involves finding a
function m : P → A that enhances the expected performance
measure for the problems described by D.

The core concept of Meta-Learning (MtL) is to exploit past
learning experiences in a specific task and its corresponding
solutions by adapting learning algorithms and data mining
processes [11]. This is achieved by extracting meta-features
from a dataset, which serve as representations of both the
dataset itself and the performance of Machine Learning (ML)
algorithms when applied to it. The relationship between meta-
features and ML performance offers valuable insights for
selecting the most appropriate algorithm for new datasets.
Consequently, ML algorithms are employed on a meta-dataset,
where each example is described in terms of meta-features, to
induce a meta-model.

In the domain of traditional (or offline) Machine Learning
(ML), Meta-Learning (MtL) has emerged as a pivotal approach
for enhancing predictive performance by effectively address-
ing challenges related to ML algorithm recommendation for
static [42], [43] and time-sensitive data [44], computer vision
algorithm recommendation [45], [46], clustering [47], hyper-
parameter tuning [48], [49], and anomaly detection [50].

C. Meta-Learning for Data Streams

The application of Meta-Learning in the field of data
streams research is a relatively recent development. One
preliminary approach for time-sensitive data was proposed by
Rossi et al. [9], where meta-learning is used to select different
regressors for different time periods within a given time series.
Unlike traditional meta-learning frameworks, the models are
continuously retrained instead of remaining static until recalled
by the meta-learner. Another notable application by van Rijn
et al. [51] involves dynamically adjusting the weights of
base classifiers within an ensemble using Meta-Learning. This
approach not only improves predictive performance but also
enhances ensemble diversity.

In the context of drifting data streams, the Enhanced Con-
cept Profiling Framework (ECPF) [52] method dynamically
selects new classifiers after detecting a concept drift using
Meta-Learning. This work demonstrates how different clas-
sifiers can perform better in different segments of the same
data stream. Additionally, Lacombe et al. [6] and Martins et
al. [10] propose frameworks for hyperparameter tuning in data
streams. The former optimizes drift detectors and classifier
hyperparameters on-the-fly, while the latter selects the most
suitable uncertainty threshold for active learning strategies to
minimize labeling costs and maximize predictive performance.



In summary, most existing works focus on applying Meta-
Learning to select the most suitable classifier (or regressor)
or determine the optimal configuration for a given classifier.
They typically address concept drift passively by relying
on classifier adaptation or employing a fixed drift detector
for the entire data stream. However, in order to effectively
tackle concept drift, it is crucial to carefully select the most
appropriate drift detector rather than naively assuming that the
classifier will always adapt.

III. PROPOSED FRAMEWORK

The goal of this paper is to evaluate the use of Meta-
Learning (MtL) for dynamically recommending drift detectors
in drifting and imbalanced data streams in real-time. The
modeling task, as depicted in Fig. 1, involves leveraging
knowledge acquired from similar tasks. On the other hand,
Fig. 2 illustrates the recommendation step. Subsequent sub-
sections provide detailed descriptions of each component. The
implementation is public available in our GitHub repository 1.

In the modeling task, a collection of data streams is sub-
jected to a group of drift detectors, and characterised by
“meta-features”. Subsequently, each data stream’s classifica-
tion performance is evaluated. During the evaluation step,
the “meta-targets” are defined, representing the labels to be
predicted by the MtL recommender system, in this case,
the most suitable drift detector. This process generates a
“meta-dataset”. Finally, ML algorithms (“meta-learners”) are
employed on a training subset of the meta-dataset to induce a
“meta-model”. The meta-model establishes the relationships
between the meta-features and the meta-target. It is important
to note that this entire process is conducted offline.

As illustrated in Fig. 2, the meta-model can be applied to
a new data stream, represented by the values of its meta-
features, to recommend the most suitable drift detector. In
this step, as the complete data stream is not available, we
extract consecutive chunks of size w from the data stream to
recommend the most suitable drift detector for a specific time
period. It is worth mentioning that this step operates online
and is applied in parallel with the classification process.

A. Meta-Dataset

We created a meta-dataset, published on the GitHub reposi-
tory, consisting of 1, 334 synthetically generated data streams
(meta-examples), using 5 different data stream generators:
Agrawal, Hyperplane, Mixed, SEA, and Sine. They were
selected due to their different intrinsic characteristics, which
not only allowed us to increase the heterogeneity of the
meta-dataset but also enabled us to leverage more knowledge
from it.. To ensure a wide range of examples, we generated
streams with 4 different sizes: {5, 000; 10, 000; 20, 000;
and 30, 000} instances. Each data stream contained 4 concept
drifts occurring at quarter intervals of the total number of
instances, with 3 different drift speeds: {1 (sudden); 350;
and 1, 000}. Furthermore, to introduce data streams with
varying imbalance ratios over time, we incorporated 3 different

1https://github.com/gabrieljaguiar/meta-drift-detection/
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scenarios based on [3]: (i) STABLE with constant IR 1:1, (ii)
FLIPPING with IR interleaving from 8:2 to 2:8, and (iii)
INCREASE-DECREASE with IR increasing from 1:1 to 1:10
and then returning to 1:1.

The extensive variations of meta-examples in our meta-
dataset were chosen to increase the diversity and representa-
tiveness of scenarios that can occur in real-world settings. By
leveraging this knowledge, we can effectively address similar
tasks and improve their performance.

B. Meta-Features

To characterize each data stream, we extract meta-features
from the selected meta-examples. This is achieved by applying
a function that captures relevant characteristics of the data
stream. Our goal is to extract meta-features that effectively
represent the behavior of drifting data streams and enable us
to select the most suitable drift detector. The meta-features can
be divided into two groups: Statistical and Temporal.

The Statistical group extracts information about the data
stream without considering the temporal relationships between
instances. Conversely, the Temporal group focuses on time-
sensitive meta-features. Since the meta-features are computed
based on each feature of the original stream, we further
aggregate them using appropriate functions. The complete list
of meta-features can be found in Table I. The extraction of
meta-features is performed using the TSFEL library.

It is important to note that most of our meta-features are
calculated in O(1) time, with only a few requiring O(log n)
time. Even with our aggregate set of meta-features, the
computational costs remain relatively low, ensuring that our
framework can respond promptly to concept drifts.

C. Meta-Target

We explored four widely used drift detectors: ADWIN,
KSWIN, HDDM, and DDM. These detectors were selected
based on their prominence in the literature [4], [52] and their
diverse approaches to detecting concept drift.

To determine the performance of these drift detectors, we
selected the Hoeffding Adaptive Tree (HAT) [53] as our
base classifier. This classifier demonstrates excellent predictive
performance but relies heavily on an effective concept drift
detector [21], [53].

For evaluating the performance of the drift detectors, we em-
ployed the G-Mean metric [3] due to dealing with imbalanced
data streams. Consequently, the drift detector that achieves
the highest G-Mean value is selected as the meta-label for
that particular meta-instance. The distribution of meta-classes
(best-performing detector) is presented in Table II.

D. Meta-Learners

As our meta-learner, we opted for the Random Forest
algorithm [54] due to its extensive usage and ability to induce
models with high predictive accuracy. We constructed four
distinct meta-models, one for each drift detector, to predict
their relative rankings within the respective data streams. The
highest predicted rank among the detectors is then selected as
the final prediction.

TABLE I: Type, name, complexity and description of meta-
features used in the experiments.

Group Meta-Feature Complexity

Statistical

ECDF O(logn)
ECDF Percentile O(logn)
ECDF Percentile Count O(logn)
Histogram O(logn)
Interquartile range O(1)
Kurtosis O(1)
Max O(1)
Mean O(1)
Mean absolute deviation O(logn)
Median O(1)
Min O(1)
Median absolute deviation O(1)
Root mean square O(1)
Skewness O(1)
Standard deviation O(1)
Variance O(1)

Temporal

Absolute energy O(logn)
Area under the curve O(logn)
Autocorrelation O(1)
Centroid O(1)
Entropy O(logn)
Mean absolute diff O(1)
Mean diff O(1)
Median absolute diff O(1)
Median diff O(1)
Negative turning points O(1)
Neighbourhood peaks O(1)
Peak to peak distance O(1)
Positive turning points O(1)
Signal distance O(1)
Slope O(logn)
Sum absolute diff O(1)
Total energy O(1)
Zero crossing rate O(1)

TABLE II: Frequency of the best-performing drift detector on
the meta-dataset used in the experiments.

Drift Detector ADWIN KSWIN HDDM DDM

Frequency 247 235 416 446
% 18.37 17.48 30.95 33.2

IV. EXPERIMENTAL SETUP

The experiments were designed to evaluate the performance
of the proposed framework under varied imbalanced scenarios
and difficulties. We aim to understand in which scenarios
meta-learning would improve the performance of the classi-
fiers. The following research questions (RQ) were addressed:

• RQ1: Is Meta-Learning able to recommend the best drift
detector for an unseen chunk of data?

• RQ2: Is the proposed Meta-Learning framework able to
handle imbalanced data streams?

• RQ3: Is the proposed Meta-Learning framework able to
handle real-world data stream difficulties?

A. Datasets

We selected a diverse set of benchmark data streams con-
sisting of 10 streams from real-world domains and 6 streams
generated artificially using the river environment [55]. This
selection allowed us to evaluate the effectiveness of the
proposed framework across a wide range of scenarios. By



TABLE III: Properties of artificial (top) and real-world (bot-
tom) data stream benchmarks.

Dataset Instances Features Classes IR

RandomTree20 20,000 10 2 ✓
RandomTree30 30,000 10 2 ✓
RandomTree50 50,000 10 2 ✓
RBF20 20,000 10 2 ✓
RBF30 30,000 10 2 ✓
RBF50 50,000 10 2 ✓

amazon 8,000 30 2 6.13
coil2000 9,822 85 2 15.76
covtype 267,001 54 2 3.91
creditcard 284,807 30 2 577.87
electricity 45,312 8 2 1.35
nomao 34,465 118 2 2.50
poker 359,999 10 2 9.69
tripadvisor 18,569 30 2 2.76
twitter 9,090 30 2 5.36
weather 18,159 8 2 2.18

incorporating artificial data streams, we were able to control
specific aspects such as class imbalance and concept drift
injection. Considering the artificially generated streams, we
selected two generators: Random Tree and Random RBF. For
each generator, we created three streams with instance sizes
of 20k, 30k, and 50k instances, resulting in a total of six
streams. We then created nine possible scenarios for each
stream by considering the same class imbalance and drift
speeds configurations used to create the meta-dataset. These
scenarios provided a diverse set of conditions for evaluating
the proposed framework. Additionally, we included real-world
streams that present challenging problems characterized by a
mix of different learning difficulties [3]. Detailed properties
of the data stream benchmarks can be found in Table III. The
reported imbalance ratio is global, i.e., it does not consider
fluctuations over time.

B. Experimental configuration

To implement our framework, it was necessary to determine
the time window within which the meta-learner would predict
the most appropriate drift detector. In our experimental setup,
we utilized a fixed window size of 5, 000 instances for this
purpose. The reported hyperparameters were chosen after em-
pirical evaluation that can be verified in the github repository.
The framework and respective classifiers were implemented
using Python 3.8 and the river [55] package. Algorithms
were run on a GNU/Linux cluster with 192 Intel Xeon cores,
6 TB RAM, and Centos 7.

C. Evaluation metrics and baselines

The evaluation process followed a similar approach to the
definition of the meta-label. We assessed the performance of
the Adaptive Hoeffding Tree (AHT) using the predicted drift
detector, employing the G-Mean metric. The metrics were
computed in a prequential manner [3], using a sliding window
of 500 examples.

M
ajority

M
E
TA

R
andom

0 5000 10000 15000 20000 25000 30000

0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.4
0.5
0.6
0.7
0.8
0.9
1.0

G
−
M
ea
n

ADWIN DDM HDDM KSWIN

Fig. 3: Prequential G-Mean for the RandomTree generator in
the STABLE scenario using three recommendation methods.
Each line color corresponds to a different drift detector and
dashed lines represent sudden concept drift points.

As baselines we used: (i) a model that always recommends
the majority class for the whole dataset (Majority) and (ii)
a model that provides random recommendations (Random)
every 5, 000 instances. These baselines are widely used to
endorse the need for a recommendation system [11].

V. RESULTS

The results were organized by comparing the performance
of the Meta-Learning framework (META) in specific generated
scenarios and real-world data streams with the baselines of
Majority and Random selection. This comparison allows
us to gain insights into the scenarios where the evaluated rec-
ommendation models exhibit superior performance. Addition-
ally, we present a meta-feature analysis to understand which
characteristics of a data stream contribute to the selection of
the most suitable drift detector.

Drift detector recommendation. Fig. 3 illustrates an example
of how each recommendation method performs in practice. It
demonstrates that META can effectively identify the most suit-
able drift detector for certain scenarios, while Random changes
without any discernible criteria. The results for all methods
on artificial stream generators are presented in Tables IV, V
and VI. Each table represents a specific imbalance scenario,
while within each table, the results for different drift speeds
are shown.

In the STABLE scenario, it is observed that the Majority
recommendation model outperforms the META and Random
recommendation models only when the drift speed is 350, indi-
cating a fast gradual drift. For slow gradual drifts, the Random
recommendation model achieves the highest G-Mean value
across all evaluated data streams. Turning to the FLIPPING
scenario, the results obtained by all methods are generally



TABLE IV: STABLE scenario. Average G-Mean values for all streams and drift detector selection methods under different
drift speeds. The best value for each drift speed is highlighted.

Drift speed 1 350 1,000

Method META Majority Random META Majority Random META Majority Random

D
at

as
et

RandomTree20 0.7545 ± 0.02 0.7469 ± 0.02 0.7390 ± 0.03 0.7487 ± 0.03 0.7188 ± 0.01 0.7144 ± 0.05 0.7158 ± 0.03 0.7152 ± 0.01 0.7194 ± 0.01
RandomTree30 0.7786 ± 0.04 0.7542 ± 0.01 0.7628 ± 0.04 0.7515 ± 0.05 0.7606 ± 0.02 0.7552 ± 0.02 0.7498 ± 0.02 0.7274 ± 0.06 0.7303 ± 0.03
RandomTree50 0.7791 ± 0.02 0.7535 ± 0.05 0.7907 ± 0.03 0.7804 ± 0.02 0.7585 ± 0.05 0.7731 ± 0.02 0.7677 ± 0.03 0.7651 ± 0.04 0.7694 ± 0.02
RBF20 0.7993 ± 0.05 0.8005 ± 0.06 0.8014 ± 0.05 0.7970 ± 0.04 0.8038 ± 0.05 0.7895 ± 0.05 0.7808 ± 0.03 0.7834 ± 0.04 0.7894 ± 0.04
RBF30 0.8159 ± 0.04 0.8115 ± 0.04 0.8252 ± 0.04 0.8167 ± 0.05 0.8178 ± 0.04 0.8170 ± 0.02 0.8112 ± 0.05 0.8121 ± 0.05 0.8134 ± 0.04
RBF50 0.8341 ± 0.04 0.8330 ± 0.04 0.8298 ± 0.04 0.8276 ± 0.04 0.8303 ± 0.05 0.8409 ± 0.04 0.8353 ± 0.05 0.8310 ± 0.05 0.8357 ± 0.04

TABLE V: FLIPPING scenario. Average G-Mean values for all streams and drift detector selection methods under different
drift speeds. The best value for each drift speed is highlighted.

Drift speed 1 350 1,000

Method META Majority Random META Majority Random META Majority Random

D
at

as
et

RandomTree20 0.5045 ± 0.07 0.4456 ± 0.09 0.4861 ± 0.09 0.4933 ± 0.11 0.4178 ± 0.15 0.4800 ± 0.07 0.5165 ± 0.05 0.4411 ± 0.11 0.4746 ± 0.11
RandomTree30 0.4919 ± 0.08 0.4815 ± 0.07 0.5290 ± 0.06 0.4831 ± 0.08 0.4763 ± 0.11 0.5431 ± 0.06 0.4834 ± 0.08 0.4733 ± 0.09 0.5601 ± 0.05
RandomTree50 0.5077 ± 0.07 0.5100 ± 0.07 0.5309 ± 0.06 0.4904 ± 0.08 0.4910 ± 0.07 0.5844 ± 0.04 0.4929 ± 0.07 0.5011 ± 0.07 0.5476 ± 0.07
RBF20 0.6476 ± 0.13 0.6243 ± 0.13 0.6449 ± 0.11 0.6843 ± 0.07 0.6737 ± 0.09 0.7136 ± 0.07 0.7140 ± 0.10 0.7156 ± 0.08 0.7500 ± 0.07
RBF30 0.6795 ± 0.10 0.6960 ± 0.11 0.7186 ± 0.12 0.7062 ± 0.09 0.6957 ± 0.09 0.7335 ± 0.09 0.7317 ± 0.11 0.7303 ± 0.11 0.7520 ± 0.09
RBF50 0.7248 ± 0.11 0.6918 ± 0.09 0.7508 ± 0.08 0.7490 ± 0.13 0.7582 ± 0.14 0.7520 ± 0.09 0.7499 ± 0.11 0.7506 ± 0.11 0.7707 ± 0.06

TABLE VI: INCREASE-DECREASE scenario. Average G-Mean values for all streams and drift detector selection methods
under different drift speeds. The best value for each drift speed is highlighted.

Drift speed 1 350 1,000

Method META Majority Random META Majority Random META Majority Random

D
at

as
et

RandomTree20 0.5707 ± 0.08 0.5644 ± 0.09 0.5688 ± 0.12 0.5997 ± 0.07 0.5537 ± 0.12 0.5888 ± 0.08 0.6090 ± 0.05 0.5435 ± 0.08 0.5517 ± 0.13
RandomTree30 0.6277 ± 0.06 0.6066 ± 0.06 0.6332 ± 0.05 0.5769 ± 0.06 0.6007 ± 0.05 0.5705 ± 0.07 0.5961 ± 0.03 0.5879 ± 0.05 0.5318 ± 0.06
RandomTree50 0.6335 ± 0.05 0.6141 ± 0.08 0.6201 ± 0.03 0.6003 ± 0.08 0.6193 ± 0.07 0.6461 ± 0.02 0.6081 ± 0.05 0.6210 ± 0.05 0.6516 ± 0.10
RBF20 0.7135 ± 0.11 0.7044 ± 0.08 0.7090 ± 0.12 0.7130 ± 0.10 0.7047 ± 0.08 0.7275 ± 0.06 0.7103 ± 0.08 0.6951 ± 0.12 0.6969 ± 0.11
RBF30 0.7335 ± 0.10 0.7267 ± 0.08 0.7520 ± 0.09 0.7272 ± 0.09 0.7197 ± 0.10 0.7306 ± 0.10 0.7305 ± 0.09 0.7156 ± 0.08 0.7246 ± 0.10
RBF50 0.7667 ± 0.09 0.7487 ± 0.09 0.7944 ± 0.04 0.7611 ± 0.09 0.7531 ± 0.09 0.7718 ± 0.05 0.7583 ± 0.09 0.7458 ± 0.10 0.7742 ± 0.07

worse compared to the previous scenario, highlighting its chal-
lenging nature. In this scenario, the Random recommendation
model consistently exhibits the best average G-Mean value
across most of the evaluated scenarios, indicating the instabil-
ity of this particular scenario. For the INCREASE-DECREASE
scenario, both the META and Random recommendation mod-
els yield the best results. When sudden drifts are present,
the META model performs better in half of the evaluated
scenarios, while the Random model performs better in the
other half. Furthermore, for fast gradual drifts, the Random
model displays superior performance, while for slow gradual
drifts, the META model outperforms the others. In summary,
the results demonstrate that both the Random and META
recommendation models outperform the Majority model, sug-
gesting that using different drift detectors in the same data
streams, in scenarios with and without class imbalance, can
lead to improved predictive performance compared to using a
fixed detector. However, it is important to note that the average
values for certain scenarios are similar, indicating the need for
further analysis.

Furthermore, to evaluate the performance of each approach
in different scenarios, we analyzed the distribution of rank
frequencies obtained by each method across all evaluated sce-
narios. This analysis is presented in Fig. 4, with the Random
Tree results shown on the left side and the RBF results on
the right side. In the STABLE and INCREASE-DECREASE
scenarios, META achieved the highest frequency as the best

method for both generators. Additionally, in these scenarios,
the Random recommendation outperformed the Majority ap-
proach, further highlighting the benefit of dynamically chang-
ing the drift detector. Concerning the FLIPPING streams,
META achieved the highest rank position for nearly 50% of
the time with the Random Tree generator. However, for the
RBF generator, Majority performed the best followed by the
Random recommendation. This discrepancy can be attributed
to the inherent instability of the FLIPPING scenario.

Finally, to address RQ1 and RQ2, we assessed the perfor-
mance of META regarding the baselines by statistical tests. We
used the Friedman test, with a significance level of α = 0.05.
Moreover, the Nemenyi post hoc test analyzes whether the
performance of the two approaches is significantly different
if their corresponding average ranks differ by at least a
Critical Difference (CD) value. When multiple algorithms are
compared, a graphic representation can be used to represent
the results with the CD diagram, as proposed by Demšar [56].

META was compared to Random and Majority over all the
datasets under different imbalanced scenarios. This analysis
is shown in Fig. 5, using the results from the Nemenyi test.
In this diagram, if the lines are connected, it means that
they are similar, and there is no statistical difference. In the
scenario without class imbalance, we observe a significant
difference between META and the baselines, providing support
for the effectiveness of the proposed method in improv-
ing performance under such conditions. Conversely, in the



META

Majority

Random

0.00 0.25 0.50 0.75 1.00

Accumulative rank [%]

STABLE RBF

Fig. 4: Frequencies of ranks scored by each recommendation
method in each of the evaluated scenarios.

FLIPPING scenario, Random and Majority outperformed
META, which aligns with the earlier findings. Regarding
the INCREASE-DECREASE scenario, there was no signifi-
cant difference between Random recommendation and META.
Nonetheless, both of these approaches performed better than
the Majority baseline, further demonstrating the effectiveness
of dynamically selecting drift detectors, even in imbalanced
data streams.

Taking everything into consideration, we have successfully
addressed RQ1 by demonstrating that our proposed method
effectively recommends the best drift detector for an unseen
data chunk in scenarios without class imbalance. Furthermore,
we can confidently state that META showcases the capability
to handle certain imbalance scenarios without requiring a
specific mechanism for skewed data. It outperforms a fixed
drift detector when applied to the entire data stream, effectively
addressing RQ2.
Real-world data streams. Firstly, it is crucial to distinguish
between artificial and real-world imbalanced data streams.
Generators rely on prior probabilities derived from the para-
metric imbalance ratio to generate instances, resulting in
bounded windows where minority and majority instances
appear. However, real-world datasets do not exhibit such
clear probabilistic mechanisms as they are collected to model
specific phenomena and do not adhere to strict priors. This

CD = 0.06

1 2 3

META Majority
Random

(a) STABLE

CD = 0.06

1 2 3

Random META
Majority

(b) FLIPPING

CD = 0.06

1 2 3

Random Majority
META

(c) INCREASE-DECREASE

Fig. 5: Comparison of G-Mean of different recommendations
algorithms according to the Nemenyi test in three class imbal-
ance scenarios. Groups of algorithms that are not significantly
different (α = 0.05 and CD = 0.06) are connected.

presents unique challenges for classifiers, including the arrival
latency of instances from a specific class and prolonged
periods of instances from only one class.

With that in mind, Table VII presents the average G-
Mean for each dataset and the respective drift recommendation
model. It can be observed that META displayed the best
results for six of the evaluated datasets. On the other hand,
in contrast to the scenario with generators, Majority displayed
better results than Random. This difference can be attributed
to the unique challenges posed by real-world streams, such as
noise that can be interpreted as concept drift and the difficulty
in detecting well-defined moments of concept drift. This also
highlights the robustness of DDM to these complexities.

Furthermore, to evaluate the performance of each approach
in each dataset, we analyzed the distribution of rank frequen-
cies obtained by each method across all evaluated scenarios.
This analysis is presented in Fig. 7, comparing META to
Majority (top) and to Random (bottom). When compared to
Majority, META achieves the best G-Mean for at least 50% of
the time in datasets like electricity and covtype, and more than
half of the time in the weather dataset, even though Majority
displays a higher average. In comparison to Random, META
achieves less than 50% in only the tripadvisor dataset. These
results demonstrate how META outperforms the baselines in
almost every evaluated dataset, thereby addressing RQ3.

Meta-feature analysis. The importance of each meta-feature
in the induction of the meta-models can be assessed using the
RF Feature Importance metric. This metric is calculated by
permuting the values of a feature in the Out-of-Bag (OOB)



Fig. 6: Average relative importance of meta-features obtained from RF importance. Each line represents a model used to predict
the ranking of the meta-labels. The X-axis is ordered by the importance of the Majority (DDM) model.

TABLE VII: Average G-Mean values for all real-world streams
and drift detector selection methods. The best value for each
dataset is highlighted.

Dataset META Majority Random

amazon 0.0538 0.0263 0.0428
coil2000 0.0890 0.0332 0.0890
covtype 0.8160 0.8443 0.8226
creditcard 0.2219 0.0353 0.0547
electricity 0.8144 0.8215 0.8108
nomao 0.3162 0.3085 0.2947
poker-lsn-1-2vsAll 0.1436 0.1367 0.1389
tripadvisor 0.6408 0.6561 0.6662
twitter 0.1053 0.1006 0.0553
weather 0.6204 0.6432 0.6412

Fig. 7: Frequencies of ranks scored by each recommendation
method in each of the real-world streams.

examples and reevaluating the OOB error. If replacing the
values of a feature with random values leads to an increase in
error, the feature is considered important. Conversely, if the
error decreases, the resulting importance is negative, indicating
that the feature is not important.

We employed the RF Feature Importance to examine the
contribution of each feature in selecting the most suitable drift
detector. Fig. 6 presents the importance of each meta-feature
for each of the induced meta-models. The analysis reveals

that the meta-models share a set of highly important features,
including Histogram, Centroid, Median, Mean Difference,
and Skewness. Conversely, features such as Autocorrelation,
Absolute Energy, Peak to Peak distance, and ECDF are among
the less important meta-features. This highlights the greater
usefulness of Statistical-based characteristics of data streams
in selecting a drift detector compared to Temporal-based
features.

VI. CONCLUSION

In this paper, we addressed the challenges of learning from
imbalanced data streams under concept drift while incorporat-
ing algorithm recommendations. We proposed an online Meta-
Learning framework that dynamically recommends the most
suitable drift detector for an unseen chunk of data. Through
extensive experiments involving real-world and artificially
generated data streams, we demonstrated the effectiveness of
our framework compared to the baselines in a majority of the
scenarios, both with and without class imbalance. The results
of our experiments supported our hypothesis that dynamically
changing the drift detector can significantly improve predictive
performance, even when using a random recommendation.
Notably, our Meta-Dataset consisted solely of synthetically
generated data streams, highlighting the generalization capa-
bility of our framework.

These promising results motivate us to further investigate
the integration of data streams and Meta-Learning. In our
future work, we plan to explore the application of Meta-
Learning for hyperparameter tuning, ensemble classifier selec-
tion, and adjusting Active Learning constraints. By expanding
our research in these directions, we aim to enhance the
practicality and performance of learning from imbalanced data
streams under concept drift.
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